Course specification

(1102 Discrete structure)

Faculty	HICIT - Higher Institute for Computers \& Information Technology - El-Shorouk Academy
Programme(s) on which the course is given:	Undergraduate program in Computer Science
Major or minor element of programme:	Compulsory
Department offering the programme	Department of Computer Science
Department offering the course:	Department of Computer Science
Year / Class	$1^{\text {st }}$ Year $-1^{\text {st }}$ Semester
Date of specification approval	$1 / 8 / 2022$

A- Basic Information

Title $:$ Discrete structure	Code: 1102		
Weekly Hours:	Exercise: 2	Practical:	Total: 5
Lecture: 3			

B- Professional Information

1- Course Aims:

Upon successful completion of CS1102, students should understand the basic concepts of: -

- Set Theory, Relations, and Functions.
- Vectors and Matrices.
- Graph Theory.
- Combinatorial Analysis.
- Algebraic Systems, Formal Languages.
- Propositional Calculus.
- Boolean Algebra.

2- Program ILOs Covered by Course

Program Intended Learning Outcomes			
Knowledge and understanding	Intellectual Skills	Professional and practical skills	General and Transferable skills
A1, A4	B1, B7, B8	C16	D11

3- Intended learning outcomes of course (ILOs)
a. Knowledge and Under-Standing:
a1. Identify the sets, relations, and functions. [A1, A4]
a2. Describe the graphical systems. [A1]
a3. Explain the principles, concepts, and practical design of Boolean and logical systems. [A1, A4]
b. Intellectual Skills:
b1. Analyze the problems including Sets, Relations, and Functions. [B1, B7]
b2. Identify appropriate methods of proof. [B7, B8]
b3. Identify a range of solutions and critically evaluate and justify proposed design solutions. [B8]
c- Professional and practical skills
c1. Solve related problems in sets, sequences, and series. [C16]

d- General and transferable skills

d1. Communicate effectively by oral, written, and visual means. [D11]
d2. Work effectively as an individual and as a member of a team. [D11]
d3. Develop Creativity and imagination skills, Self-assessment ability and Critical thinking and analytic ability. [D11]

4- Contents

Topic	Hours	Lec.	Exc/Lab
SET THEROY - Sets and elements - Universal set, empty set, and Subsets. - Venn diagrams, Set operations, Algebra of sets, Duality. - Finite sets, counting principle, Classes of sets, power sets. - Arguments and Venn diagrams - Mathematical induction	10	6	4
RELATIONS - Product sets. Relations. Pictorial representations of relations. - Inverse relations. Composition of relations. - Properties of relations. Partitions. Equivalence relations. - Partial ordering relations - n -array relations. FUNCTIONS - Functions, Graph of function. - One-to-one, onto and invertible functions. - Indexed classes of sets. - Cardinality.	10	6	4

- Statement and compound statements
- Conjunction p AND q. Disjunction, p OR q Negation, NOT p.
- Propositions and truth tables.
- Tautologies and contradictions. Logical equivalence.
- Algebra of propositions.
- Conditional and biconditional statements.

VECTORS AND MATRICES

- Vectors, Matrices. Matrix addition and scalar multiplication.
- Summation symbol. Matrix multiplication.
- Transpose, Square matrices.
- Invertible matrices. Determinants.

GRAPH THEORY

- Graphs and multigraphs. Degree, Connectivity.
- The bridges of Konigsberg, traversable multigraphs.
- Special graphs. Matrices and graphs.
- Labeled graphs. Isomorphic graphs.
- Directed graphs.

COMBINATORIAL ANALYSIS

- Fundamental principle of counting.
- Binomial coefficients.
- Permutations.
- Combinations
- Ordered Partitions.
- Tree diagram.

BOOLEAN ALGEBRA

- Basic definitions
- Duality
- Basic Theorems.
- Boolean Algebra as lattices.
- Representation Theorem. Disjunctive normal form for sets.
- Minimal Boolean expressions.
- Karnaugh maps.

SELECTED TOPIC

10	6	4
5	3	2
10	6	4
10	6	4
10	6	4

5- Teaching and learning methods

Teaching and learning methods	Used
Active Learning	
Lectures (blending learning - online learning using virtual classroom)	\checkmark
Tutorial Exercises (hybrid learning - online learning)	\checkmark
Practical Lab (blending learning - online learning)	-
Exercises	\checkmark
Discussions.	$\sqrt{ }$

Self - Learning strategy	
Reading material	-
Websites search	\checkmark
Research and reporting	\checkmark
Self-studies	\checkmark
Experimental strategy	
Group work	-
Presentation	-
Problem solving strategy	
Problem solving / problem solving learning based	\checkmark
Case study	\checkmark
Synchronous E-Learning	-
Virtual lab	-
Virtual class	-
Chat Room	\checkmark
Video lectures	\checkmark
Asynchronous E-Learning	
E-Learning	V

6- Student assessment methods

Methods	Assessment	Used
Electronic Midterm Exam	To assess the knowledge and understanding achieved by the student during the previous weeks. (Online on e-learning hub)	V
Pencil-to-Paper Final Exam	To evaluate what the student gain at the end of the course, and to assess the knowledge and understanding, general skills, and intellectual skills.	$\sqrt{ }$
Course Project	To allow students work in team, and to evaluate knowledge, understanding, intellectual, and transferable skills. (Online on e-learning hub, FTF)	-
Electronic Course Work \& Quizzes	To keep the student always in the course, and to evaluate knowledge, understanding, intellectual, and transferable skills. (Online on e-learning hub)	$\sqrt{ }$
Practical Exam	To measure the ability of students to design and implement a software program (FTF).	-
Participation	To assess the knowledge and understanding achieved by the student during the previous weeks.	$\sqrt{ }$

Assessment Schedule

Assessment	Week \#
Participation	$\mathbf{3 - 1 4}$
Electronic Mid Term Exam	$\mathbf{8}$
Final Exam	$\mathbf{1 6}$
Electronic / hard copy Course Work \& Quizzes	$\mathbf{2 - 1 4}$

Assessment Weight

Assessment	Weight \%
Participation	$\mathbf{5 \%}$
Electronic Mid Term Exam	$\mathbf{1 0} \%$
Final Exam	$\mathbf{8 0} \%$
Electronic / hard copy	$\mathbf{5 \%}$
Course Work \& Quizzes	$\mathbf{1 0 0}$
Total	

Course Work \& Quizzes:

- Short Exams, Assignments, Research, Reports, Presentations on e-learning hub
- Class / Project discussion in a virtual classroom

7- 6- List of references

Essential books (textbooks)	- Lipschutz, Seymour, and Marc Lipson. Schaum's outline of discrete mathematics. McGraw Hill Professional, 2021. - Epp, Susanna S. Discrete mathematics with applications. Cengage learning, 2010.
Recommended books	- Knuth, Donald E. Art of computer programming, volume 2: Seminumerical algorithms. Addison-Wesley Professional, 2014. - Rosen, Kenneth H., ed. Handbook of discrete and combinatorial mathematics. CRC press, 2017. - Edition, Seventh, and Kenneth H. Rosen. "Discrete Mathematics and Its Applications.", Companion Web site: http://www.mhhe.com/math/advmath/rosen/ - Neville Dean, Essence of Discrete Mathematics Prentice Hall. ISBN 0-13-345943-8. Not as in depth as above texts, but a gentle intro. - Klette, R., and A. Rosenfeld (2004). Digital Geometry. Morgan Kaufmann. ISBN 1-55860-861-3. Also, on (digital) topology, graph theory, combinatorics, axiomatic systems. - Mathematics Archives, Discrete Mathematics links to syllabi, tutorials, programs, etc. http://archives.math.utk.edu/topics/discreteMath.html

	- Graham, Ronald L., et al. "Concrete mathematics: a foundation for computer science." Computers in Physics 3.5 (1989): 106-107 - Cheadle, Andrew M., et al. "A Tutorial Introduction." (2013). - Grimaldi, Ralph P. Discrete and Combinatorial Mathematics; An Applied Introduction. Addison-Wesley Longman Publishing Co., Inc., 1985.
Periodicals, website	- PowerPoint presentations of all course materials - All tutorials material [https://moodle.sha.edu.eg/course/view.php?id=1353]

8- Required Facilities

To assess professional and practical skills given the following facilities:
a. Tools \& SW (Technologies facilities):

- Data show and PC computer.
- Microsoft TEAMS to create virtual classrooms for lectures and tutorials.
- Portal (MOODLE) to make electronic quizzes and electronic midterm exam.
- Portal (MOODLE) to upload project deliverable and assignment.
- Academy portal (MOODLE) to upload electronic material.
b. Teaching facilities:

	Lecture	class	Lab
Whiteboard	used	used	-
Pc / laptop	used	used	-
Data show	used	used	-
Webinars	MS TEAMS	MS TEAMS	-
Social Media	Facebook Page for 3 ${ }^{\text {rd }}$ year	Facebook Page for 3 ${ }^{\text {rd }}$ year	-
Chat Room	Chat Teams	Chat Teams	-
Videos	Stream-MOODLE	Stream-MOODLE	-
Website	MOODLE	MOODLE	-

9- Course Matrices

a. Course Content / ILOs Matrix

Course Contents	Knowledge \& understanding			Intellectual skills			Professional and practical	General		
	a1	a2	a3	b1	b2	b3	c1	d1	d2	d3
Set Theory	X		X	X	X			X		
Relations	X		X	X				X		
Functions	X		X	X				X		
Proposition Calculus		X		X	X	X	X		X	X
Vectors and Matrices		X	X		X	X	X			
Graph Theory		X	X		X	X	X	X	X	X
Combinatorial Analysis		X		X	X	X	X	X	X	X
Boolean Algebra		X		X	X	X	X			X
Selected Topic					X	X	X	X	X	

b. Learning Method / ILOs Matrix

Learning Methods	Knowledge \& understanding			Intellectual skills			Professional and practical skills	General		
	a1	a2	a3	b1	b2	b3	c1	d1	d2	d3
Lectures	X	X	X	X	X	X	X			
Tutorial Exercises	X	X	X	X	X	X	X	X	X	X
Reading material	X	X	X	X	X	X	X			
Websites search	X	X	X	X	X	X		X	X	X
Research and reporting	X	X	X					X	X	X
Problem solving				X	X	X				
Group work							X	X	X	X
Presentations										
Practical Lab										
Discussions.				X	X	X	X	X	X	X

c. Assessment Methods / ILOs Matrix

Assessment Methods	Knowledge \& understanding			Intellectual skills			Professional and practical	General		
	a1	a2	a3	b1	b2	b3	c1	d1	d2	d3
Electronic Mid Term Exam	X	X	X	X	X	X	X			
Final Exam	X	X	X	X	X	X	X			
Electronic Course Project										
Electronic Course Work \& Quizzes	X	X	X	X	X	X	X	X	X	X
Practical Exam										

d. Course ILOs Vs Program ILOs

		Knowledge \& understanding		Intellectual skills			Professional and practical skills	General skills
		A1	A4	B1	B7	B8	C16	D11
K\&U	$\begin{aligned} & \mathbf{a} 1 \\ & \mathbf{a} 2 \\ & \text { a3 } \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{X} \end{gathered}$					
Int.	$\begin{aligned} & \mathbf{b 1} \\ & \text { b2 } \\ & \text { b3 } \end{aligned}$			X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$		
P. \&P.	c1						X	
General	$\begin{aligned} & \mathrm{d} 1 \\ & \mathrm{~d} 2 \\ & \mathrm{~d} 3 \end{aligned}$							$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$

Course Coordinator: Dr. Farouk Shaaban (
Head of Department: Dr. Ahmed El-Abbassy ()
Date: 1/8/2022

